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1. Introduction 

The caiculation of cross sections for scattering processes is a basic tool in the analysis of data 

and backgrounds at both hadron-hadron and electron-positron colliders. The most widely used 

approach is that of Monte Carlo integration: one generates a set of momenta with a Lorentz- 

invariant phase space distribution, rejects those sets that fail a set of cuts designed to mimic the 

experimental cuts (for example, a minimum transverse energy cut in hadron-hadron collisions), and 

evaluates the relevant matrix element on the remainder, thereby obtaining a numerical estimate of 

the desired cross section. 

The purpose of the present work is to present another algorithm for generating a Lorentz- 

invariant phase space distribution. It is useful to distinguish two steps in such a process: one 

typically generates a set of points in a hypercube, I E [O,lld(“), and then maps the hypercube 

to phase space (d(n) depends on both the number of final-state particles and on the mapping). 

To calculate a cross section, one integrates Over the hypercube a matrix element, multiplied by a 

weight factor (which in general depends on z). In the simplest approach, one simply generates a set 

of pseudo-random points distributed uniformly in the hypercube; but more sophisticated adaptive 

approaches, such as the VEGAS algorithm [l], are also available. I shall assume the use of such 

an adaptive algorithm, and use the term ‘phase space generator’ to refer to the mapping from the 

hypercube to phase space, along with a formula for the weight factor. 

Most of the traditional literature on the subject [2,3] concerns itself with the general problem of 

generating phase-space distributions for particles with arbitrary masses. In the context of present- 

day (and planned) colliders, however, most of the ‘final-state’ particles (quarks and leptons) are 

massless or nearly so, compared to the typical momentum transfers in processes of interest. This 

was emphasized by Kleiss, StirIing, and Ellis (41, who presented a phase space generator, RAMBO, 

intended for this regime. 

The RAMBO generator first generates an isotropic set of massless four-momenta not satisfy- 

ing energy-momentum conservation. Afterwards, it applies a Lorentz transformation to obtain a 

momentum-conserving, and then a conformal transformation to obtain an energy and momentum- 

conserving, set of massless four-momenta. (For phase space with massive particles, another scaling 

of the momenta and recalculation of the energies yields a valid configuration.) In this way: the 3n-4 

independent variables describing a final state with n massless particles are smeared smoothly wer 

3n variables (which are in turn mapped into a uniform distribution wer 4n variables). This gener- 

ator is both elegant and simple to program, which makes it an extremely useful as a check on more 
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complicated generators such as the one I present below. 

Unlike traditional generators, the RAMBO generator has a weight factor which (for the purely 

massless case) is independent of the point in phase space: it contributes a factor dependent only 

on the total center-of-mass energy in the process. Thus in a certain formal sense it has ‘maximai 

efficiency’: a uniform weight over the integration region will yield the minimum error (fork a given 

amount of computational work) in a Monte Carlo integration procedure. Indeed, if we were simply 

interested in calculating the volume of phase space, this generator would be unsurpassable in 

efficiency. Practical applications differ in two respects: we wish to integrate a scattering matrix 

element; and we wish to perform the integration over that part of phase space that survives certain 

angle and energy cuts. For such practical applications, the efficiency of the RAMBO generator is 

not maximal, and one can improve upon it. 

2. Monte Carlo Integration 

We are interested in calculating a cross section for the production of n final-state particles, 

u,(n) = 
I Ph... .P.'. 

aIpsn(p; IPirmil) FS I-%L+~(P;{IJ~~~~})I~ 

WL,h C"I. 

where d,,+, is the scattering amplitude, F is the flux factor for the incoming particles and S the 

symmetry factors for the tial state, P is the sum of the four-momenta of the incoming particles 

(with the convention that EincO,,,ing > 0), and where LIPS is the Lorentz-invariant phase space 

measure for n particles with four-momenta pi and masses mi: 

dLIPS(p; {p;, m;}) = (27r)464 p - &F-J J-r*, 8 2m5(Pf - 4Pbt 

= @)‘J’ k - ig.4 &!J*, (2xd;% 

(2,2) 

I have suppressed any additionai integrations that may arise (such as the integration over parton 

distributions in the case of hadron-hadron collisions). We are particularly interested in the light (or 

massless) particle case, where Ei E Ipi/ for momenta surviving the cuts. A phase-space generator 

provides us with a mapping from the hypercube to Lorentz-invariant phase space, p; = Gi(z), and 

the Jacobian of the transformation, W(x). The cross section of interest is then 

c.(n) = 
I 

(o,,,dl”, dz ‘Lt({Gi(~)l) W(+)FS l.h+z(P; IG(z),wl)12 

I 

(2.3) 
= - dz M(z) 

[O,l)~(“~ 



where 
1 

ec”,({Pi~) = 
if the set pi passes the cuts; 

(2.4) o 
otherwise. 

If we choose NMC points in OUT Monte Carlo, with probability density P(z), the estimate of 

the cross section is given by [l] 

%5C = (2.5) 

and the fractional error estimate is given (for large NMC) by 

where 

WC = & 1 (Z)’ 

z 

(2.7) 

In the simplest implementation, the probability distribution would be uniform (P(z) = 1); more 

sophisticated approaches, such as the VEGAS algorithm, attempt to choose the probability distri- 

bution so as to minimize the error. 

In performing calculations, we wish to minimize the amount of work required to obtain a 
. 

specified accurecy in OUT calculations; or equivalently, to maximize the accuracy obtained for a 

given amount of work. In numerical calculations, this translates into the ideal of minimizing the 

amount of computer time required to obtain an answer to a specified degree of accuracy. In Monte 

Carlo calculations, the computer time is proportional to the number of points taken; and the error 

(in the limit of large number of points) decreases in proportion to the square root of the number 

of points. The most hard-nosed measure of efficiency is thus a quantity like l/(computer time x 

(relative error)‘), which I shall term the practical efficiency. In the limit of a large number of 

Monte Carlo points, the practical efficiency approaches a constant for any given calculation. 

However, this constant depends on the details of the hardware and software system. It is 

therefore perhaps preferrable to think about the ordinary efficiency, which I define 

where NMc is the number of Monte Carlo points used, and c is the fractional error in the answer 

(as estimated, for example by VEGAS). In addition, it will be helpful to define a hit rate h, the 

fraction. of points thrown down by VEGAS that survive the quasi-experimental cuts. 

A hit rate close to unity is desirable; in that case, the phase space generator spends most of 

its time generating useful points, rather than points to be discarded. One might assume that the 

amount of time spent generating phase-space configurations is in any event negligible compared to 
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the amount of time spent evaluating the matrix element for a scattering process. This assumption is 

incorrect for two reasons: fist, for some background processes, such as multijet production, there 

numerically reasonable approximations [5], which are also reasonably efficient computationally; 

second, the volume of phase space which survives the cuts typically decreases factorial[y with in- 

creasing number of final-state particles+, whereas the approximations to scattering matrix elements 

can often be cast in forms where the amount of computational work increases only polynomially [6]. 

In such a case, if the hit rate is proportional to the fractional volume of phase space that survives 

the cuts, then the computation time for large ‘number of final-state particles is dominated by the 

phase-space generator, even if it is much faster to generate a single configuration than to evaluate 

a scattering matrix element. 

VEGAS wilI attempt to increase the hit rate by performing changes of variables numerically, 

and thereby adjusting the distribution P(z), but it will be able to do SO only in cases where the 

cuts are approximately parellel to the axes of the hypercube. RAMBO, however, effectively smears 

the Lorentz-invariant phase space over the hypercube in such a way that the cuts depend non- 

trivially on all the variables. VEGAS is then unable to improve the hit rate much by x-mapping 

the coordinates of its hypercube; indeed, when driving RAMBO from VEGAS, one typically sees B 

hit rate roughly equal to the fractional volume of phase space that survives the cuts. 

The above considerations are in some ways a special caset of the general observation [l] that in 

an importance-sampled Monte Carlo integration, one obtains an optimal choice for the distribution 

of points by taking 

P(z) = ,&& 
VEGAS attempts to make this choice by changing variables numerically. If we can find a phase- 

space mapping that allows VEGAS to choose the probability distribution more effectively, we will 

improve our efficiency. 

Even if we can do this, however, adaptive algorithms often have trouble handling singular 

or sharply-peaked behavior in the integrand. If possible, it is preferrable to absorb singularities 

(or even cut-off singularities) into the probability distribution anaLytically. In the case of interest, 

scattering amplitudes for massless particles typically exhibit two sorts of singularities. The matrix 

element will diverge as the any outgoing particle becomes soft; and as any two outgoing particles 

become collinear. As we shall see, one can absorb the former singularity into the probability 

distribution, thereby smoothing out the integrand, and improving the efficiency of our integration. 

t This is typical of the dimemian dependence of the ratio of volumes of a regular solid embedded in another of 
different shape. 

1 The considerations me not precisely the same, because the computer time for evaluating configurations which 
do or don’t survive the cuts is different. 
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A generator which increases the hit rate over that obtainable with RAMBO, and absorbs some 

of the singularities of the matrix element, is given in the next few sections. I call it OCTOPUS. 

3. Massiess Phase Space With Cuts 

Let us begin by focussing attention on the case of a phase space generator for massless 

particles; we shall consider the more general case of light particles in section 4. What are the 

sorts of simulated experimental cuts one may wish to apply? In electron-positron colliders, the lab 

frame and center-of-mass frame are the same, and so the appropriate cuts are minimum energy 

cuts E,,,i. (to eliminate soft junk), minimum angle cuts Bmin between outgoing particles, and a 

minimum angle cut IY~~.~ with respect to the beam direction (to exclude debris travelling down 

the beam pipe). In hadron-hadron colliders, collisions involve partons of varying energies, and so 

the center-of-mass frames of different collisions are smeared along the beam direction; in this case, 

a transverse energy cut ET,,,~,, is appropriate. (The transverse energy is defined as the projection 

of the energy onto the plane transverse to the beam; for a massless particle, it is the same as the 

transverse momentum.) In addition, experimenters impose cuts on the pseudo-rapidities of jets 

and on the cone angle AR between jets. We shall mimic these in the conventional manner with 

limits on the maximum pseudo-rapidities, 7 = - ln(tan0/2) (which for massless particles is the 

same as the rapidity y = h[(E t pil)/(E - p11)]/2), of th e outgoing partons, and with limits on the 

minimum AR, 

AR = am t (A4)’ (3.1) 

between outgoing partons (I shall assume below that AR,i, < r/Z). Of course, these sorts of 

cuts are also necessary in a theoretical calculation in order to cut off the infrared divergences of 

scattering amplitudes. 

To simplify the presentation, I will consider only cuts that treat all particles symmetrically; this 

is in fact true of the cuts imposed in one physically important situation, the calculation of multijet 

cross sections. It is however possible to generalize the equations presented below to different cuts 

for different outgoing particles, so long as the cuts are of the same general types given above. When 

using the RAMBO algorithm, the cuts are applied after to each momentum set generated. The event 

is rejected if the set fails the cuts. I shall assume a similar check is applied to the output of the 

generator described below, so that we may (if desired) apply a weaker set of constraints within the 

generator. That will not cause us to generate sets of momenta that fail the desired cuts, but will 

only reduce the efficiency. Thus we need not solve the constraints implied by the cuts exactly, but 

only approximately. 
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One can write an iterative formula for the phase-space measure [2], 

3 
(ELIPS,(P,o,; {Pi)L) = (2;)r;El dLIPS,-l(PM -m; II%)?=‘=,) (3.2) 

which I shall use as the basis for the algorithm. 

For massless particles, equation (3.2) becomes 

~m&(kt; {Pi):=,) = & Et& dhdcosh (ILIPsn-~(pto, -PI; {~i}:=z) (3.3) 

where it will be convenient to take 19; and 4; as the polar and azimuthal angle, respectively, of the 

i-th particle with respect to the beam axis. I will utilize a hypercube of dimension d(n) = 3n - 4 

(in contrast to the RAMBO’S d(n) = 4n), with the following correspondences for the first n - 2 

momenta, 
ES~-2 ++ Ei 

with each z E [0, 1). 

ISi-1 c) t?i (3.4) 

I3i ++ $i 

What are the integration limits on these variables ? Let us assume that we have generated 

momenta for particles 1,. . , (i - l), and define the remaining four-momentum, P = P,.,, - Ci,: pi. 

We must ensure that after generating a momentum for the iirst remaining particle, we will be able 

to satisfy the energy-momentum conservation constraint for the other remaining particles. Now, 

the sum of any number of four-momenta with positive energies is a positive-mass four-momentum, 

so we must require that 

(P -d 2 0 (3.5) 

This constraint is also clearly sufficient to satisfy energy-momentum conservation, since one can 

always write a positive mass’ four-momentum in terms of two massless four-momenta (setting the 

rest to 0). 

Thus 

2Ei (PO - (PIcosB;p) < (P”)” - lPl2 (3.6) 

where BiP is the angle between pi and P, so that defining the dimensionless quantities 

ei = EJP’ 

ZI = lPl/PO 

=T min = ET min jP” 

emin = &tin/P’ 

(3.7) 



we have the constraints 
1fV 

ei I __ 2 

coseip 1 
2e; + d - 1 

2eiv 
s Lip 

(3.8) 

(The kinematic limit on ei ensures that Lip 5 1.) As detailed in appendix I, the latter constraint 

implies the following constraints on cos Oi and $Q, 

where 

case; E [c-,c’] 
44 E [4-$4’1 

c+ - 1 - 

c-=-1 1 
4- = $p - 7r 
4+ = #p t TT 

-1, Lip 5 -cosep \ 
c- = 

L,P, otherwise 

1, Lip 5 COSOP 
Cf = 

L;cp, otherwise 

6 = 4P - Lp 

cb+ = @P + LQ 
and where Bp is the polar angle of P, and 

(3.9) 

Lip < -1 

(3.10) 

Lip > -1 

L$ = LiP cos BP + \/(I - L&p) (1 - cost BP) 

Lg = acm 
id 

LIP - co8 ei cos ep 

(l-cos’e,)(1-cos’ep) ) 

(3.11) 

For the electron-positron case we aho have the constraints ei 2 emin and 1 cosBi/ 5 cos Obcam. We 

must in addition leave sufficient energy for the minimums of the remaining particles, and thus 

ei<mm ( 1+v 
~ 1 - (n - i)‘z,i” 

2 ’ ) 
(3.12) 

In the hadron-hadron case, we can translate the constraint [vi/ < T,,, into a constraint 

1 CO~~;I 5 COSebc.m 
8 

(3.13) 



by defining cos e,,.., = tanh q,.,. Every particle must have an energy greater than or equal to the 

minimum transverse energy, so we have the upper bound 

ei<mln ( 
1tv 
__ 1 - (7% - i)eTmi. 

2 ’ > q emax (3.14) 

The transverse energy constraint e; sin 0i 2 Ed ,,,i,, itself imposes the additional constraint on cos ei, 

(3.15) 

(given that e; 2 e~,,,i”, of course). To ensure that this has a non-trivial overlap with the interval 

[CC, c’] given in equation (3.10), we must demand that 

(3.16) 

Although it is in principle possible to impose these constraints exactly, the non-trivial cases turn 

out to involve the solutions to a quartic equation. As discussed in appendix II, it is therefore 

preferrable to impose a slightly weaker set of constraints, 

% 2 LET, if .9rrnin > 
1 - 112 (3.17) 

2(1 - vsinBp) 
and4~e~,i.t~02(i-vZ)cosZep~~ 

where 
a = sin’ ep - (1 - 2) ~02 ep 

p = &ZeOsep - vsinep 

LET=;+ 

v ( flsinBp + J4d+ min t p ( 1 - +) d ep 
> 

2a 

(3.18) 

(The prerequisites on Ed ,,,in are nearly always true in practice for those situations where the second 

constraint is more severe than the fist.) 

We also want to ensure that the choice of energy for p; still allows us to satisfy the transverse 

energy constraint for the following n - i momenta. That constraint, combined with the requirement 

of energy-momentum conservation, implies that there is a maximum longitudinal momentum that 

the following momenta can have; and thus, we must not allow the present pi to increase the existing 

longitudinal momentum too much. That is, we must demand 

Irmx j$l IPjLl 2 IPL - PiLI (3.19) 
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With 
w = 1 - 2 CC& ep - (71 - i)2e+,i, + ekmin 

x=1- 
e;,in(l - d cd e,) 

d 

L& = 

this constraint, as shown in appendix III, translates into the requirement that 

ei 5 L$.,, x>o 

ei 5 w/2, xc0 

(3.20) 

so long as 
e:. min + d co2 ep > &.. 

L,L 5 max (w/27 Qminr LET) or X < 0 

These prerequisites on Ed min are again nearly always true in practice. (One would omit the con- 

straints of equation (3.21) if they were not.) 

Given e;, we also obtain an additional constraint on COST;, 

cosei E 
[ 
ucOsep - J(i - ei)l - cn - i)+;min ucosep + J(I - + - ln - i)2e+min 

ei G 1 . . (3 23) 

Equations (3.14), (3.17), and (3.21) together give upper and lower limits el and e, on the 

energy fraction of the particle. To generate an energy from the corresponding I, we could set 

Ei = P0(23i-2(e, - e,) + q) (3.24) 

with an associated jacobian e, - et. However, as noted in the previous section, massless-particle 

amplitudes have soft singularities of the form M(z) - l/El, while the measure in equation (3.3) 

only has one power of the energy. In order to absorb the remaining singularity (and thereby 

introduce another power of the energy into the measure), we instead should set 

Ei = P0 e, exp [ln(e”/el) 23i--2] ; (3.25) 

the associated jacobian is then 

p = E; ln(e,/el). (3.26) 

For some purposes (for example, computing the correlation between different amplitudes), one may 

desire an even larger explicit power of E in the measure. To obtain a net power of ,JZ!p+‘, we should 

set 

Ei = Poeye: - (eQ, -e;;)z3i-2)L/P (3.27) 
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The associated jacobisn in that case would be 

(3.28) 

Given the value ofei, equations (3.10), (3.13), (3.15), and (3.23) together give upper and lower 

bounds c, and cl on cos&. We can then set 

cosei = ccU - cI)z3i-l f c,. (3.29) 

The associated jacobian is 

.I! = (C” - c,)/2. (3.30) 

Before turning to the question of satisfying the interparton angle constraints themselves, we 

may note that the very existence of such constraints forces the minimum invariant mass of a pair 

of l&d-state particles to be greater than some minimum, 

(pi + pj)’ > ZE+,i,,(l - cos AR,,.) 5 mi,i, (3.31) 

(This formula holds for the case of hadron-hadron scattering; there is of course a similar one for 

the electron-positron case.) This allows us to replace equation (3.5) with a stronger constraint, 

(P - p;y > Np.i.,?n~air = cn - y - i - lL;& 
With pL2 pan. = Npai.an~,i,/(P’)‘, the maximum energy fraction is then reduced a bit, 

=i 5 
l + 21 &irs -- 

2 2(1 -?I) 

and the relative cosine limit becomes a bit tighter for given energy fraction, 

cos eip z 
2ei + d - 1 t p* 

2eiv 
r-l” E Lip 

(3.32) 

(3.33) 

(3.34) 

Equation (3.10) continues to hold, with Lip + Lip. However, since this modification makes 

the cosine constraint stronger, we can continue to use the (weaker) constraints following from 

equation (3.16); they will not (improperly) eliminate any configurations which would survive the 

cuts. 

Let us now examine the question of satisfying the cone angle constraints, ARij 2 AR,i.. 

(Although I shall not discuss it in detail, the method of satisfying the angular separation constraints 

in an electron-positron environment is similar in many ways.) It is convenient to do this by ignoring 

any potential constraints on Bi, and imposing constraints only on &. This will result in a less-than- 

maximal hit rate, but in a hadron-hadron environment this choice is acceptable, since the with the 
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usual definition of AR, the cones are wider in the azimuthal angle than the polar one. We wish to 

exclude all angles q+i for which AR;j < AR,i. for any j < i. The remaining angles in general form 

a disjoint set of intervals. How should we attack this problem? 

The method I shall describe is of course not the only possible one, but it is convenient. The 

idea is to subdivide the circle [0, ~?r] into scnne number of wedges, and to iterate a marking process 

over all j < i. For any given j, one marks as excluded all wedges which lie entirely within ARmi. 

of the j-th particle. One then generates an angle uniformly within the unmarked wedges; the 

associated weight factor is simply the number of unmarked wedges divided by the total number of 

wedges. 

In practice, we might as well subdivide the interval [&, $+I rather than the whole circle into, 

say, B bins, numbered 0,. .., B - 1. (It is most convenient to choose B to be a multiple of the 

number of bits in a computer word, and to let each flag for a wedge be represented by a single bit. 

For practical purposes, B = 96 and B = 128 are good choices.) Shifting all angles by $p simplifies 

matters somewhat; define 

Pi,j = ARki, - (Q - ,)* 

(3.35) 

b = (~pj++LdB Y 
2L+ 

-1 

where ‘modZ?r’ means shifting into the interval (-?r,x] by adding or subtracting an appropriate 

multiple of 21~. (The increment of -1 in the b, is intended to ensure that the entire bin falls within 

the excluded region.) Note that the assumed limit on AR,i. implies that 7i.j 5 n2/4. 

All bins are initially marked as allowed. We must iterate the following steps for each j < i for 

which pi,j > 0, 

if pi 5 ~pf, Mark bins bl b, as excluded 

if ‘pi > v:, Mark bins bl. . B - 1 and bins 0.. b, as excluded 
(3.36) 

(It should be understood that ‘marking’ a bin with number less than zero or greater than B - 1 has 

no effect, and that the sequence al . a~ is empty if at > a~. The inequality on the pf, rather than 

the more obvious one on the bl,,, ensures that we do not exclude a bin if the entire excluded region 

falls within the bin.) This will leave us with a set of B, allowed bins, which we label b,, , bB=. 
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(If none of the bins are allowed, reject the configuration.) The angle & is then given by 

k$ = LBawJ 

b+ = h, 

I?+ = Bc,qi - k, 

$i = q4p - L+ f 2Lm5+ 

The jacobian associated with generated of c$~ is 

(3.37) 

The astute reader will note that this part of the algorithm has a running time which scales 

quadratically with the number of outgoing particles, rather than linearly as do the remaining pieces. 

This may seem bad in contrast to RAMBO, whose running time scales linearly with the number of 

particles, but in fact this difference is somewhat of an illusion, because the running time to check 

whether an event passes the cuts also scales quadratically with the number of particles. 

Thus far the discussion has concerned the first n - 2 final-state four-momenta. For the last 

two, we must do things a bit differently, because we have only two independent variables in total, 

rather than three per particle. The phase space measure for these two particles is 

%+,&-l = e;-, d cOsen-l d&-l 
2(1 - I?) 

(3.39) 

I shall choose as the independent variables the cosine of the polar angle of the (n - 1).th particle, 

and the azimuthal angle of this particle, both with respect to the sum of the (n - l)-th and n-th 

momenta. This azimuthal angle is then unaffected by energy-momentum conservation constraints, 

and is constrained only by the additional sorts of constraints considered above. 

Thus I define a new coordinate system, with 

1 - 

=%= ,;;;, - ___ - - sin f$p% + cos $pf (3.40) 

(At this point, P = Pi,, - C;i: pi.) For the two last particles, we take 0,-, and 6, to be the polar 

angles with respect to the 61 axis, and &,, c++, to be the azimuthal angles in the i+& plane 

(with $= 0 in the 62 direction). It will be convenient to define a unit vector in the direction (or 

opposite to the direction) of the projection of & into the original z-y plane. 

6, = 5inOp01 - ~o~t+z~ 
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The minimum energy constraints immediately imply the following range for CY,-~: 

h-1 E [el-~~(e*,i.,~),~:~min(l-e,,,,~)] (3.42) 

for h&on-hadron scattering, with analogous limits in the electron-positron case. 

We can solve for the cosines of the angles in terms of the energy fractions of the particles: 

cose c-1 - 79 6 + 
n _ 1 

= 

2e,-l 2) 

Y2 t 2.+-l - 1 = 
2t?,-lV 

cose, = 
e; - ei-1 t Y2 

2e,v 
d - 2e,-, + 1 

= 2(1- e”-I)D 

and thereby arrive at limits for cos 8,-1, 

c; d - 1 = max ( -1, t 2e; 
2ejv > 

n-h ( 1, 211 t 2e: - c: 1 = 
2&v > 

(3.43) 

(3.44) 

TO generate cost?,-l, we set 

cOse,-l = cc: - c;)z3,-6 + c; (3.45) 

with the corresponding jacobian, 

Ji-, = (CL - c;,s (3.46) 

where we have put the factors from the measure into the jacobian for convenience. The two energy 

fractions and the other cosine are then 

1 - d 
en-' = 2(1- vcose,-l) 

i - 2~ ~0~ en-, + d 
en = 2(1- vcose,-,) 

= 1 - e,-, (3.47) 

cose 
n 

= 2tJ - (1 t 21z)cos8n--1 
i - 2v cos en-, + d 

The transverse energy fractions of the particles are 

e:.,-, = (Pn-I 'by + (Pn-I 'by 

= ei-, [sin’e,-, COS~~&-~ + (cosB,-, sinBe - sin8,_L sin+,-, cosep)2] 

= ef+, [sin’ e,-1 t (co? en-, - sin* eneI sin* q4,-,) sin’ ep 

-2cO~e,-l sinB,-, sinOpcOsep sin&-,] 

(3.48) 
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‘The transverse energy constraint is then 

sin’ en-, sin’ ep sin’ &-I + 2cose,-1 sine,-, sinep coseP sin$,-1 

or 

where 

- sin’ en-, - CO? en-, sin’ ep + <o 

sin&-1 E [s;-, , &,I 

3’ = - 
cos Bp cos 9; It J1 - 4 nd4 

sin ep sine; 

Now, sin& = - sin#,-l, so we obtain another restriction, 

sin&-i E I-S,‘, -s;j 

Combining the two and defining 

5’ = mm-l, -sn+,s- n--l ) 

3” = min(l,s,+-I,-s,) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

we obtain 

si=b.-~ t [max(-l,-s,f,s,-,),min(l,s,+-l,-s,)] (3.54) 

It will be helpful to define 
Ai = asinJ( 

A, = asins, 
(3.55) 

For the AR constraints involving the final two particles, one could in principle proceed along 

the same lines as above; but in this case, the rapidity and azimuthal angle (in the lab frame) of the 

particles are non-polynomial functions of sin &-, , and thus implementing that constraint would 

require solving many equations numerically, which is likely to be rather expensive. Instead, it is 

easier to implement the somewhat weaker constraint excluding not the full circle, but only the 

circumscribed square IAll/ 5 AR,i./&, 11141 < AR,,./& The remaining cuts will then be 

applied after phase space generation. as usual. Denote by ei-, and $I, the polar and azimuthal 

angles of (n - 1).th particle in the lab coordinate system (ic, 9, ;). Then 

cose;-, = cosen-, cosflp t sine,-, 5inep sin&, 

sine,Lml sin$,L-, = case,-1 sinepsin$p + sine,-L cosf$,-, cos&. - sinenel sin@,-, cosepsin~p 

sine,!-, cos&-, = cose,-, sinepcos& -sine,-, cos&-, sin& -sine,-, sin&-, cosep cos&. 
(3.56) 
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Equation (3.54) specifies two regions in c+$-~, where the sin 4n-1 satisfies the given constraint, and 

where COS&~ is either positive (R+) or negative (R-). Divide these regions into bins. For each 

i < n - 1, we may form an allowed set in $+,-I, consisting of those bins which satisfy one of the 

following equations 
atanh cos e,L_, > ‘li f AR,i./fi 

atanh cm e,Lml < Eli - AR,,JJZ 

$,“-I - h > A&im/JZ 
(3.57) 

4:-l - 4; < -AR,,&& 

as well as one of the corresponding equations with n - 1 - n. As shown in appendix IV, these 

equations translate into the equations 

I 

cosqs 10 

h-1 E 

i, [r - &:,,i,x - Al,‘!,,i] , 

(3.58) 

cosf$ < 0 

while the corresponding set for n - 1 + n gives a similar pair with At!‘;:’ + A;;‘;;). The 

definitions of the A$!‘“) (which h ere are all shifted to lie in the interval [-r/Z,3?r/Z]), along with 

those of the booleans N& and S$ used below, are given in the appendix. The intersection of the 

allowed sets for all i then gives the allowed region, within which we generate C&I uniformly. The 

associated jacobian is again the number of allowed bins divided by the total number of bins. Thus, 

if we split each of the two regions for &-I into fi intervals, and define 

bj.tbk+ _ (A:;“;,$,i - 
(Wl,“),i - A, - AI 

bj,tb- _ (,T _ AjdI,i) (n I+)+ - Al@ {n-l+},; - Au - A J 

(3.59) 

(Note the interchange of u ++ 1 in going from the As to the b-s.) We start with all bins marked 

‘allowed’ (A+ = {all bins}), and iterate the following steps for all i < n - 1 for which all the 

inequalities are non-trivial (Aizl Ni-,,i = ‘true’): 

s* := 0; 

For j = 1..5 where the j-th inequality has a solution (Si_,,; = ‘true’), 

if A;!,,; < Al,‘“,,i, then mark bins bj,‘* n--L,i.. bf,“‘f,i in 5’5 as ‘allowed’; (3.60) 

otherwise, mark bins 0.. . b,-, i j’“*, and bins bi!:,i. . . L? - 1 in S+ as ‘allowed’; 

A+ := A* fl S,.; 
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followed by a similar set of steps for with the b,,i. We will be left with B: allowed bins in the R+., 

which we label b:, , bi.,. Set y = ZX~~-*; the angle &-, is then given in a fashion similar to 

equation (3.37): 
k, = I(B,+ -i B,)r3,-,J 

bj = (B,c + B;)qne4 - k, 

b, = b;, 

$n-, = AL + (A, - A,)%$ 
kf < B.+ 

q5n-1 = r - A, - (A, - A,)? 
kj 2 B,f 

The jacobian associated with this angle is 

JZ-1 = 
A, - Al B.+ + B, 

x ZB 

(3.61) 

To obtain the over-all weight factor, we must combine the jacobians of equations (3.X), (3.30), 

(3.38), (3.46), and (3.62) with the factors in the measure, equation (3.3), and the phase space weight 

for the final two particles; this yields a weight W, 

w = x(2ny” n-2 

2 
J;-, g &J?J,“J: (3.63) 

4. Light Particle Phase Space 

In this section, I generalize the constraints developed in the previous section to handle light 

but not massless particles. By ‘light’ particle I mean a particle whose mass is smaller than the 

corresponding minimum energy or minimum transverse energy constraint. (Although some of the 

considerations in this section in principle apply to heavier particles as well, in practice it is not 

appropriate to apply cuts to these particles, since one is often interested in them only in intermediate 

states, with cuts applying only to their decay products. For these particles, a traditional-style phase 

generator is more appropriate; one may then used the form&z developed in this paper for the light 

particles.) 

So consider the question of generating a phase space distribution for n particles with masses 

{m; < (ET,,,~” or E,i.)}. With 

Iv,” = 2 mj (4.1) 
j=i+l 

the counterpart of equation (3.5) is now 

(P - pi)2 2 (Mpy. 
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One could also construct the precise analog of equation (3.32), but in practice it is more efficient 

to use a slightly weaker constraint, with 

‘@ = (m,~~;,,~*~j2+ [mjjgk,fi-:) +“<(“; -lkir (4.3) 

where n, is the number of particles after the current particle with masses less than n+,/JZ. 

Define the dimensionless quantities 

x, = J/P2 - (Mi t rq] [P’ - (‘vi - rni)2] 
Pl 

Yi = 
PZ - Mf f m; 

P= 
p; = s (4.4) 

equation (4.2) then leads to a maximum value for the energy 

e, < Tit&v 
‘- 2 

(the corresponding limit on the norm of the momentum is (X; f y;v)/2) and then a constraint on 

cos($p 2 (v’ - l)li + 2% ~ L” 
2kiv tP (4.6) 

The form of the constraints on Bi and & is then very similar to the one in the !xevious section; 

indeed, we need modify equations (3.10) only by replacing Lip with L$.. So long as 7i 5 1 (which 

is usually true in practical applications), then LrP 2 Lip, and we can again retain the constraint of 

equation (3.17), as it will be weaker than (but still a reasonable approximation) to the corresponding 

constraint that would emerge from Lz. (In the event that LyP < Lip, one would retain only the 

constraint e; 2 Ed min .) 

We may replace the longitudinal momentum constraint of equation (3.19) with a slightly weaker 

constraint on the longitudinal energy, 

*ax 2 IEjLl 2 IPL tpir.1 
j=i+l 

(4.7) 

As shown in appendix III, this leaves the additional bounds (3.21) in place. 
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The mass will of course cut off the soft divergences of the matrix elements, but if the mass is 

much smaller than the minimum energy cut-off, then the matrix element will be sharply peaked 

near the minimum energy, and it is still helpfd to generate an extra factor of either the energy or 

the norm of the momentum to smooth out the integrand. The measure has the form 

constant x Ipi/’ J& = constant x lp;(dEi; (4.8) 

I shall leave a factor of IpilE; explicit, and generate the remainder through the mapping. For this 

purpose, one may again use equation (3.25); the jacobian (3.26) also carries over without change. 

The various additional restrictions on cos 0, from equations (3.13), (3.15), and (3.23) carry over 

without change, as do the generation of the polar angle, equations (3.29-3.30), and the method of 

satisfying the AR constraint for the azimuthal angles, equations (3.35-3.38). 

For the linal two particles, the measure in the light particle case is now (see ref. [Z]) 

-. where 

+L&-i 1 k+ 
(k;-,)‘@(k:) 

* 
f n--l - lx,-, costI,-1 

p = 1 - “2 + pi-, - /iI = (1 - UZ)7PI 

k* 
vpcoso,-1 * pz - 41.1ie1(1 - u~cos~e,-l) 

n-l = 2(1- V~cos~B,~,) 

Both solutions will contribute only in the case k;-, > 0; this can arise only if p < 2~,-~. 

With M%-, = m,, we have the kinematic limits on e~,-~, 

t-r’ = *ax 
( 

e~~i”, Yn-1 - A-*~ 
2 > 

ey = min 1 -Qmin, 
( 

7n-1 + L-lV 
2 > 

(4.9) 

(4.10) 

(4.11) 

which lead to corresponding limits on cos&-,. In addition, if p < 2/~,,-,, there is an additional 

constraint on the cosine, since the particle can no longer travel in the direction opposite to P; 

putting these together, we find 

P > 2P,-1 or e?’ 2 qm,, 

otherwise (4.12) 
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where 

ki,,u) = /G 

em Pn-lrn-I 
Bm*r = x,-,vT77 

(4.13) 

To generate the angle (taking account of the uncommon possibility that k;-, > 0), set 

cos Rn-, = (cc:: - c;L)qnes + CI” 

k,-l = k,‘-, 

Jme - (CT - cy)kf,-, 
n-1 - k,-1 - ve,-, cosO,-, 

cose,-, = I(c:: - C;1)(2z3n--b - I)1 t c;" 

kn-1 = k'i1"(221"-L-1) 
n-1 

I 

P < w-1 

J,“-“, = 2 x cc: - G”)k;-, 
kpl - UC,-, COS~?,,-~ 

(4.14) 

(Once again, we have absorbed some of the factors from the measure into the jacobian.) The energy 

fraction and cosine of the last particle are 

e, = 1 - e,-, 

case, = 
” - k,-l cosen-, 

kn 

(4.15) 

Equations (3.50-3.62), dealing with the azimuthal angle of the fmal pair, carry over to the 

present case without change. The final difference from the massless case comes in the formula for 

the weight, where equation (3.63) is replaced by a similar form, 

w = x(27r)z-z” *--l 
2 

J,“-“, n: IpilJ:Jf.rf 
i=, 

5. Numerical Examples 

As an example, I will consider the integration of the following function, 

2 
A(p~~Pb+{Pi~21)= (a1)(12)(23)...(n-1n)(nb) 

(4.16) - 

over n-particle phase space, where (ii) = 2~: pj; s = (a b); and Pt,t = p, t pb = (&, 0). This 

function has the essential features of massless-particle amplitudes, soft and collinear singularities. 

Indeed, it is one of the terms in the non-vanishing Parke-Taylor h&city amplitude for multi-gluon 

scattering [7]. 
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I shall use two sample cuts: 

(a) ET& = 0.02& AR,i, = 0.8, vrnax = 3.5. 

(b) ETmin = 0.05& A&, = 0.8, Q,,., = 3.5. 

In each calculation, VEGAS was used to feed each of the phase-space generators, RAMBO and 

OCTOPUS. VEGAS was given five iterations (with a minimum of 2000 accepted events each) to 

refine its bins, and adapt (as best it could) to the integrand. The VEGAS grid was then frozen, 

and the run continued with sets of ten iterations, increasing the number of points per iteration for 

each new set. These sets yield an estimate of the asymptotic efficiency of each of the generators 

in the particular calculation. In practice, I have simply chosen the error estimates corresponding 

to the iterations with largest number of points. (One also must ensure that one has reached a 

regime where the estimates of the integral do not fluctuate too wildly, else VEGAS'S error estimates 

wiIl usually be much too small.) Tl me f ractions of phase space surviving the two cuts is shown in 

figure 1; the scaling of the hit rate with the number of final state particles n for the two cuts is 

shown in figure 2; the scaling of the ordinary efficiency in figure 3; and the scaling of the practical 

efficiency in figure 4, for a calculation done on the Fermilab ACPMAPS system. (The fluctuations 

in VEGAS’S error estimate from independent iterations are the source of the estimated error in the 

efficiencies. These estimates are however rather noisy, and thus the error bars shown in figures 3 

and 4 should be understood as qualitative estimates of the uncertainty.) 

6. Summary 

A Monte Carlo phase-space generator is a necessary tool in calculation of cross-sections for 

high-energy scattering experiments. It is desirable, and possible, to construct a generator which 

takes into account many of the experimental cuts on detected particles. The equations presented 

in sections 3 and 4 describe such a generator. Encoding them in a computer language yields a 

phase-space generator of unsurpassed ugliness, but superior efficiency. 

I thank Paul MacKenzie for many discussions on Monte Carlo integration and on practical 

aspects of working with VEGAS, and the Fermilab lattice group for time on the ACPMAPS machine. 
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Appendix I. Constraints on Angles 

We wish to translate a constraint on an angle relative to a fixed vector, Bip, 

cose;p > CR (I.11 

into constraints on the polar and azimuthal angles Bi and di. Th e constraint cannot be satisfied if 

CR > 1, and it is trivially satisfied if CR < -1, so we may assume that CR E [-1, 11. Rewrite 

~08 eip = cos 8; cos ep + sin ei sin ep COS(+~ - +P) 

= casei co~ep + J(I - ~09 e,)(l - co~l ep) COS(~~ - #p) 

so that the constraint becomes 

cR - cos e, eos ep 

U.2) 

cos(‘i-‘p)’ J(~~coszei)(~-coszep~ (1.3) 

In order to allow a solution to this constraint, the right-hand side must be less than or equal to I: 

cR - cog eiep 2 J(I - ~032 e;) (1 - ~0~2 ep) (I.41 

If we square both sides, we obtain 

(CR - COS6iep)' i (1 - COS' ei) (1 - COS2 ep) Or CR - CaSei COSep < 0 

which simplifies to 

(I.51 

cosei E [c-,c+] or coseicosep > cR (I.61 

where 

c*=cRCOSepk (l-c;)(l-COSzep) (1.7) 

(Note that C* E [-I, I].) 

We must now distinguish two cases: (a) cosep 2 0 (b) cosep < 0. The constraint on COS& 

now becomes 

{case; 2 & and cos8; E [C-, c+]} 
CR or cosei 5 - co9 ep 

{casei 5 & and cos t?i E [C-, Cf]} 
CR or cosei 2 - 

cos ep 

(~0s~~ < 0) 

(cos8p 2 0) 
@.a) 

Let us consider the first case in more detail. We can subdivide this into three sub-cases, 

CR ->l: cos ep cosei E :-1,1] 

& E [C, c+1: cosei E i-i,@ 

CR - < -1: 
cos ep 

cosei E [c-,c+] 

(I.91 
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The function z/m is monotonically increasing for I E (-1,l); thus, 

cos ep CR 

Jl - cosa ep 
=+------ 

cos ep 
< -1, 

CR - > c+ * 
cos ep 

(1.10) 

so the ‘missing’ sub-cases in equation (1.9) are in fact forbidden. There is of course a similar 

sub-division in the case cos Bp 2 0. 

In summary, the constraints on 0; are 

-1, CR __ > -1 cos ei t cos ep 1, CR>1 cosep - (~09~~ < 0) c-9 otherwise Cf, otherwise II 
-1, 

CR __ -’ -1 1, 
CR 

(1.11) 
-<l 

cos ei E cos ep cos ep 

II 
(cosep 2 0) 

c-t otherwise c+, otherwise 

which, upon shifting CDS Bp to the other side of inequalities, and observing that at the points where 

-~ the two side in the inequalities are equal, the two branches are also equal, we can write more simply 

as 
-1. cR 5 - cosep CR 5 COSep 

=03ei E 
c-, otherwise otherwise II (1.12) 

while the constraint on $i (given the above constraints on casei) may be written 

l4i - 4Pl 5 =cos id 
cR - cos ei cos ep 

(l-cos~ei)(l-cos~ep) ) 
where the range of aces is understood to be [O,?r], and where I adopt the convention that acos(z > 

1) = 0, acos(z < -1) = 7r. 

Appendix II. Transverse Energy Constraints 

We wish to discover what constraints on the energy are imposed by the requirement that the 

intersection of equations (3.10) and equation (3.15) be nontrivial, that is by the pair of constraints 
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In the case that Lip 5 -1, the constraints are trivial, so we need consider only L;p E [-1, I], which 

implies that 
d - 1 

-ve; < ei + - 
2 

< llei (11.2) 

or 

ei E 1 l-v 1+v -__ 
2 ' 2 1 (11.3) 

Of course, we must have Ed ,,,in < (1 + u)/2, else there is no range of allowed energies anyway. 

I will restrict attention to the case costJp < 0; the analysis for the other case is similar. 

If L;p/cosBp > -1, then the fist constraint in equation (Xl) is trivially satisfied; whereas 

Lip/cosBp 5 -1 implies that L;p > -ax&, which in turn implies that Lip < 0. Since in 

this case, c- = Lip, the first constraint is again trivially satisfied. 

The second constraint in equation (11.1) 1s satisified trivially if Lip/ cm Bp > 1, so consider 

the remaining case LipI cos f3p < 1, or 

(11.4) 

If L,fp > 0, the constraint is again satisfied trivially. A non-trivial constraint will arise if LTP < 0, 

or 

cos ep 2e’-2:+a’ +..,,~~<O (11.5) 

Introducing Z% = (2% - 1)/v (note that i: 6 [-I, I]), this condition becomes 

which tells us that 

where 

cosOp(i t u) t sin0p (l- G)(l - 3) < 0 (11.6) 

2 > --v and cos’ 0p(i. t v)’ - sin’ Bp(1 - v’)(l - i’) > 0 

1 - 212 
ei > - and i: $ [i-, t+] 

2 

i* = - cos2eptl f (l- vZ)sinBp 1 - 2 
cos*ept(l-u~)ShZep = 2(1 Fvsin&) 

With e* = (?u + 1)/Z, we see that 
1 - 212 

e+ 2 __ 2 
1 - 212 

e- 5 ~ 
2 

so this case is more simply e; > e+. 
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The second constraint of equation (11.1) becomes 

-J(w1)2-4 eGmin < cosep(5 t U) t sinBpJ(1 - d)(l- 3) (11.11) 

where the assumption e; > +,,,in is implicit. Since both sides of the inequality are negative, it 

becomes 
(20 t l)* - 4e;,;, > ~02e~(i: t TJ)* t sin’ ep(l - vz)(l - 9) 

t ZcosBpsin0p(i t IJ)J(~ - u’)(l- 9). 
(II.12) 

In principle, the inequality can be solved exactly, but this involves the disgusting solutions to a 

quartic equation. We may however observe that 

+2cosepsinBp(i. f ~)\/(l- ul)(l~ 9) = -21 cosSpl sin&(& + v)J(l - v’)(l - 9) 

> -21 cOseplsinop(i + u)J~ 
(11.13) 

and this gives a weaker (but simpler) constraint, 

(iu + 1)1 - 4e;& > cOszep(l + v)' t sin'ep(l - ?)(i - z?) f 2cosep sin&(i + v)JjCF) 

(11.14) 

The inequality has the solution 
i 4 [i-7 i+l, a>0 

2 E [i+,i-1, a<0 
(11.15) 

where 
i+ = B sinb l J~cz~:.~~~ f cosz ~~(1 - +)p 

a (11.16) 

and where a and p are given in equation (3.16), 

a=sinZ~p-(l-~z)~~sZep 

p = J1-vacosep - usin&. 

If we define 

Y+ = i+l 
sin ep f ~0s ep JiFF 

eTmln=O - -p Q 
vsinBp - JCPcosBp XI- 
sin ep 7 &YP cos BP 

(11.17) 

then the sign of the denominator of $- is the same as the sign of a. 

If a > 0, then the discriminant 6 inside the square root in equation (11.16) is positive, and 

furthermore, i- < Q- 5 -1, so i: cannot be less than i, and the constraint in equation (11.15) 

reduces to i: > i+. If a < 0 (which in practice happens less frequently), then if the discriminant 

is negative, the constraint cannot be solved, and we are left with the restriction that ei < e+. If 
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the discriminant is positive, we may note that i- 2 .Q- 2 1, so that the upper limit on 2 remains 

1 (from the original kinematic limit), while the lower limit becomes i: 2 i+. 

Putting all the constraints together, we get (6 > 0) 

ei > eTmin and ei $? [et, (vi+ t 1)/2] (II.18) 

In practice. the region between eT,,,in and e + does not exist, and it is sufficient to consider these 

additional constraints only in the case that +,,,in 2 e+ and 5 > 0. 

Appendix III. Total Longitudinal Momentum Constraints 

In the massless case. we want 

m8X 2 IPjLl 2 IPL -PiLI (III.1) 
j=i+l 

The left-hand side can be reexpressed as 

which is maximized when ETA = ETCH,, for all remaining particles. Furthermore, 

JG t dm 2 J(Ej t El - E~min)’ - E$,;, (111.3) 

SO the sum of absolute longitudinal momenta is maximized when the remaking energy is distributed 

equally amongst the momenta; this maximum is 

&PO - Ei)2 - (n - i)2E+min (III.4) 

In the case where different particles have different minimum transverse energies, the sum is maxi- 

mized when the energy of each particle is proportional to its minimum transverse energy: 

ET min, 
Ef o( Cj ET mini 

(111.5) 

The maximum in this case has the value 

$izz&q (111.6) 
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With 

we thus have the constraint 

/ /PJcos& - EicosBi/ 5 &PO - E<)z - (P”)‘s$ (111.7) 

The left-hand side has its minimum when 

COS@; = sign(cosOp)min(/ COSMIC IPI/&, dm); (III.8) 

in order to allow a solution at all, the value there must be less than the right-hand side. If 

ei 2 Je+min t uz cosz Bp, the minimum of the left-hand side is zero, and there is no constraint; 

otherwise we must have: 

~ul cosop/ - eidmi 5 dm 

squaring both sides, we obtain 

(111.9) 

-2vlcosBP~Jef-e~,i”~e~,i,+1-v~COS~8p-~~-22e; (III.10) 

which means that 

e; 5 w/2 or ei E [e-,e+l (III.11) 

where 
w=l-v~cos~ep-s~te:.,i, 

x=1- 
e+,i”(l - d co2 0,) 

d 
w 

e* = 2(1- ul cosz ep) (1 f 4cosW&) 

Combining the two, we obtain 
ei 5 e+, x>o 

ei 5 w/2, xc0 
so long as either x < 0, e- 5 w/2, or e- < emin, which is always true in practice. 

Equation (III.7) then yields the following constraint on cos B;, 

(111.12) 

(111.13) 

cm 8; E 
vcosep - J(l - ei)z - 3+ vcosep t J(I - ei)a - 3; 

e; ei I 
(111.14) 

In the massive case, we replace the constraint (111.1) with the slightly weaker constraint 

*a 2 IEjLl ?‘I~L tP<Ll (111.15) 
j=i+i 

The right-hand side of the inequality (111.7) is then unchanged. In the left-hand side, ei should 

be replaced by k;; but in the case that e; < ,/e+ min f uz cosz Bp, leaving the e; in place gives a 

weaker (but safe) constraint. 
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Appendix IV. Constraints on Penultimate and Ultimate Momenta Angles 

We wish to simplify the set of inequalities 

where 

atanhcosB,L-I < vi - ilR,i./\/Z (IV.la) 

atanhcost?,L-l > v; t AR,,&& (IV.lb) 

#,“-I - A > ARmitnlh (IV.lc) 

$f;-, - 4: < -ARmin/& (IV.ld) 

COSO,L-, = COS.~,-, cosep + sin6,-l sinBpsin$,-, 

sinB,Lel sin4,Lw1 = cosO,-, sin& sin& t sine,-I cos.$-1 cos& - sin&-L sin&, cos8psin$p 

sinB,L-l COS&-, = cos&-, sin& cos$p -sin&, co~fp,-~ sin&3 - sin8,-I sin&-, cosep costip. 
(IV.2) 

Recall that we are keeping track of two separate regions for c#+-~, one where cos ++-, 2 0, the 

other where the cosine is negative. Let us restrict attention for a while to the first region. Inequal- 

ities (IV.la,b) are the easiest; taking the hyperbolic tangent of both sides, and using the previous 

equation, we obtain 

sin&-I < 
1 

smep sin&+1 ( 

E08 ei - tmin 
1 - t,ia cos l3i - 

co3 ep cos 8,-l 
> 

= s;-,,; 
(IV.3) 

sin&-I > 
1 

( 

COS 0; + t,in 
smBp sin 8,-1 1 + tmin cos 0; - 

cossp cos&-, 
> 

E 3:-, i 

where t,in = tanh(AR,i,/&). With the range of asin is understood to be [-71./2,7r/Z], and 

F 1 

*‘vu n-1.i = asinsA-l,i 

I&* il 5 1 : *‘.I 
n-1,i = TT - A>:,,i 

s;-,,i = ‘true’, N;+ = ‘true’ 

L,i > 1: N;-,,; = ‘false’ 

Sk-,,; < -1 : s;-,,i = ‘false’, N;-l,i = ‘true’ 
A&L 2 

n-l,{ = aS‘ns,-,,i 

ls:-,,il 5 1 : AZ’” n--l,i = T - ..I::*,; 

s:-,,; = ‘true’, N:-,,i = ‘true’ 

s;-,,; > 1 : s;-,,i = ‘false’, N;-,,i = ‘true’ 

s;-,,i < -1 : N;mlsi = ‘false’ 

(IV.4) 
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these first inequalities become (in the non-trivial case with a solution) 

&I E ([A;!,,;, A:!+] U [A:Ll,;, A;Yl,J) modZ?r (IV.5) 

(It may be desirable to replace the asin function in this equation with an computationally cheaper 

approximation; this will require a shifting of the bins in section 3, to account for the maximal 

possible error.) 

The remaining two inequalities in equation (IV.l) we may replace by the following trio, 

*in ($f;-, - (4; + AR,,&&)) > 0 

sin (&-, - (k - ARmin/&)) < II (IV.6) 

cm (42~, - A) 5 0 

where the allowed region will consist of those r++,-L which satisfy any one of the constraints, 

Introduce 

C+A = C’J*(di - $P + ARmin/&) 

e-a = cos($i -#p - AR,;.,'&) 

co = COS($i - 49) 

S+A = sin($i - ‘$P t A&&~) 

S-A = sin(& - 4p - AR,,,;./&) 

30 = *in(h - $P) 

(IV.7) 

Expanding the trigonometric functions, and using equation (IV.2), we can rewrite these inequalities 

as follows: 

-a+,5 c0stL.1 sinep t sine,-1 (cosep8+a sin+,-, f c+& COS&,) > 0 

-54 costJ,-, sin& t sine,-1 (coseps-asin~,-l +c-a COS+~-,) < 0 

c~cosO,-~ sin0p -sine,-, (~~~e~~~sin~,~~ - s~cos&-,) 5 0 

(IV.8) 

KtA = J COG Bpsf, t CiA 

no = \/ COG epc; t s; 
s;-,,i = s+~ COS~,-~ sinep 

sine,-l n+* 

Sk-,,; = 
s-& cosen-, sinep 

sine,-l n-a 

5 co cos en-1 sin BP 
*n-1,; = sin e,-1 no 

(IV.9) 
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and then 

A3.U 
n--L.i = ?r - asin [8~-,,i] - 

IL,il I 1 : ( A3,l 
n--l,i = r + asin [ai-,,i] + asin 

*3,u 
n-,,i = - asin [$I+,,+] + asin 

\ s:-,,i = ‘true’, N:ml,; = ‘true’ 
s;+ > 1 : s;.+ = ‘false’, N:-,,i = ‘true’ 

3 s,-,,; < -1 : Jv-,,, = Lfalse’; 

A”1 
n-1,‘ = * - asin [s:-~,~] - asin LA [ 1 n-A 

‘40 
n-1.i = asin [.9:-l,i] - asin 

IC-,,;I 5 1 : ( *4.’ n-L,i = - C-A asin [J$-l,i] t asin - [ 1 n-A *‘a n-3.i = T t asin [.9A-l,i] + asin ?.A 
I I n-A 1 

s+A COS&J > 0 

S+A COS& < 0 

8-A COS& 2 0 

8-A COS e,B < 0 

\ S.Z-,,i = ‘true’, N;+ = ‘true’ 
I S,-l,; > 1 : N,‘+ = ‘false’ 

I s,-,,; < -1 : s:+ = ‘false’, N:-,,, = ‘true’; 
and 

I 

‘Ju 
n-l,i - - ash [s~-l,i] t asin [$-I 1 

‘4544 
n-1,* = 7r - asin [8kl,i] + asin 

eo cos ep 2 0 

cocos6p < 0 (IV.10) 
\ S:-,,i = ‘true’, N;-,,i = ‘true’ 

s;-,,i > 1 : s:-,,i = ‘false’, N;-l,i = ‘true’ 
5 s,-,,i < -1 : N;-,>; = ‘false’. 
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The inequalities of equation (IV.8) then have the solutions 

fi [Al,‘f.l,i>Ai”l,i] t cosf$ > 0 
h-1 t 

i [r - A?,,;, s - Ail,+] , cosr#~ < 0 
(IV.11) 

(This same form also allows us to include the inequalities (IV.la,b).) 

The corresponding inequalities for sin&, will also yield constraints on $“-I, since #,,-I = 

r + 4”. There are a variety of minus signs and exchanges between lower and upper bounds that 

make a difference, but otherwise, the definitions parallel those for A$):‘: 

A”‘. x asins’ n.x n.t 
!s;,~I < 1 : A;,; = ?r - A$ 

gi = ‘true’, N,$ = ‘true’ 

& > 1 : N& = ‘false’ 

& < -1 : s$ = ‘false’, N& = ?rue 

A:: = asin& 

I& < 1 : 

1’ 

A?,; = 77 - A>,; 

sg; = ‘true’, N$ = Ltrue’ 

s;,; > 1 : s$ = ‘false’, N& = ‘true’ 

& < -1 : N& = ‘false’ 

;1 

(IV.12) 



& > 1 : 

s;;<-I: 

A:,: = A t asin (s:,~] - asin !?!A [ 1 n+A 
J+A COS op > o 

A$,: = - asin (&I - asin _ =+A [ I %A 

A;,: = asin [&I + asin - c+A i I n+A 

A;,: = r - asin [&I + asin - c+A I I 
s+A cosep < 0 

t S& = ‘true’, N& = ‘true’ “+’ 
s;t,, = ‘false’, N& = ‘true’ 

N;,; = ‘false’; 

I 
C-A A>,: = - asin [s$] - asin __ [ I n-a 
I I 

9-A COS& 2 0 
A>,: = T + asin [s:,;] - asin b!L 

n-A 

A4”. = C-A n,* x - asin [.9j$ + asin _ [ I n-A 

C-A A:,: = asin [s:,~] + asin - [ I n-A 

3-A cosep < 0 (IV.13) 

t S:,i = ‘true’, N,$ = ‘true’ 

3A.i > 1 : N;;‘,i = ‘false’ 

Sk;<-1: 

bi.iI 2 1 : 

qi = ‘false’, N& = ‘true’; 

A$ = IT + asin IS:,;] + asin 

c~cosop > 0 

A$ = - asin [.si,i] f asin 90 i I n+A 

sz;> 1: qi = ‘false’, N& = ‘true’ 

& < -I : N& = ‘false’ 
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Figure Captions 

Fig. 1 The fractions of phase space surviving the cuts described in the text, as a function of the 

number of outgoing particles. The upper set of points corresponds to the first set of cuts 

(ETmin = O.OZ&), while the lower set corresponds to the second set (ETCH" = 0.054). 

Fig. 2 The hit rates for the integral of equation (5.1). The hit rates for RAMBO are plotted with the 

diamond symbol, those for OCTOPUS with a cross: (a) &,,,i,, = O.OZ& (b) ETmin = 0.05&. 

Fig. 3 The ordinary efficiencies for the integral of equation (5.1). The efficiencies for RAMBO are 

plotted with the diamond symbol, those for OCTOPUS with a cross: (a) &,,,in = O.O’Q% (b) 

E Tmin = 0.054. 

Fig. 4 The practical efficiencies for the integral of equation (5.1). The efficiencies for RAMBO are 

plotted with the diamond symbol, those for OCTOPUS with a cross: (a) ET,,,~" = O.OZJi (b) 

E Tmin = 0.054, 
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